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Computational Anatomy

• origins found in D'Arcy Thompson's book 

On Growth and Form.

• focuses on the quantitative analysis of 

variability of biological shape

– Analyze features derived from shape 

• e.g., lengths, angles, areas, volumes, etc



Challenge

• Clinical studies aim to describe effect of 
disease/treatment on brain

• Computational anatomy to quantify shape

– Traditional volumetrics (regions of interest)
• Tissue volumes

• Manually delineated ROIs

• Automated or semi-automated ROIs

– Voxel based morphometry

– Tensor and deformation morphometry

– Surface morphometry (Duygu Tosun)



Neuron and Brain

gray matter

white matter

sulcal CSF

ventricular CSF



Tissue Classification

We can count pixels to quantify 

the volume of gray matter, white 

matter, and CSF
T1-weighted MRI

Gray Matter White Matter CSF



Lobar Regions of Interest 

(ROIs)
• Frontal Lobe

– intelligence, behavior

– motor control

• Parietal Lobe

– sensory perception

– language

• Occipital Lobe

– vision

• Temporal Lobe

– hearing, smell

– language



Basal ganglia

• Caudate

• putamen

• globus pallidus

• crude movement



Thalamus

• Relay station

– sensory

– motor

• Connections 

to cortex



Hippocampus

• Learning

• Memory



Manual Subcortical Structure 

and Lobar Identification



On each slice (approximately 29 to 32 slices for each side) 

a processor selects the hippocampus from head to tail

Manual Hippocampal 

Identification



Problems

•Manual delineation

–prone to error

–High intra- and inter-rater reliability requires 
rigorous training 

–Enormous investment of time

•Goal is to automate ROI identification



Automatic ROIs

• Identify structures on 
template brain

•Warp template to new 
subject using gray 
scale images, 
sometimes landmark 
assisted

• Apply resultant 
transformation to 
template ROIs

Warp

Apply
transform



4 marks are placed on 5 slices along its length 

representing the width of the hippocampus (medial, 

inferior, lateral, superior)

Hippocampus: Landmarking



Automated Hippocampus 

Results

Result of landmarks and atlas being warped (represented 

here in coronal and axial views)



Freesurfer Cortical Parcellations



SNT vs Freesurfer Hippocampi

Method Amygdala

Hippo 

GM

Fimbria / 

Alveus

Intralimbic 

Gyrus

Parahippo 

Gyrus

SNT No Yes No No No

Freesurfer Partial Yes Yes Yes Partial

FSSNT



Combining Tissue Classification 

and Automated ROIs 

(lobes, hippocampus)



Comparison of hippocampal 

volume

The error bars show the standard deviation. The numbers at the base of the bars indicate the 

adjusted hippocampal volume in mm3



Taken from Hua et. al. 2008 
11 tract based probabilistic 
maps



Auto Tract-of-Interest 

Measurement

Individual FA

‗DARTEL‘

Register to 

Template

Jacobian 

Determinant

‗DARTEL‘

Create 

Template 

Averaged Template

‗DARTEL‘

Inverse Warping

‗DARTEL‘

Warp Images

Susumu’s ICBM FA 

Template with Fibers 

(22 TOIs)

‗DARTEL‘

Individual FA+TOI FA+TOI in 

common 

space

Auto-I Auto-II



FA template image in MNI space with probabilistic 
tract-based ROIs of the anterior thalamic radiation 

(ATR) overlaid and thresholded at A) 5% and B) 20%

A B



Auto-I findings in a large 

sample
92 subjects (32 CN / 30 AD / 30 MCI)

MCICN

CN

(n=32)

MCI

(n=30)

aMCI

(n=15)

AD

(n=30)

MCI<CN

p

aMCI<CN

p

AD<CN

p

L.  t.CG FA 0.36
(0.02)

0.36
(0.02)

0.35
(0.02)

0.33
(0.03)

n.s. n.s. <0.001

R.  t.CG FA 0.37
(0.03)

0.37
(0.02)

0.37
(0.02)

0.34
(0.03)

n.s. n.s. <0.001

L.  t.CG Vol 

[‰]

0.98
(0.15)

0.91
(0.13)

0.88
(0.12)

0.77
(0.15)

0.04 0.03 <0.001

R.  t.CG Vol 

[‰]

1.10
(0.21)

1.04
(0.14)

1.02
(0.12)

0.84
(0.17)

n.s. n.s. <0.001

— Mean FA and fiber volume of the bilateral 

t.CG were significant reduced in AD vs. CN

— In MCI vs. CN: No difference of mean FA 

was seen; but left t.CG were significantly 

atrophied 



Limitations of Traditional 

Volumetrics
• User must choose ROIs a priori

• Disease or other clinical variable may 

affect a region of the brain not measured

• Common ROIs are affected by variety of 

diseases (low specificity)

• Effect may be localized; obscured in ROI

• Solutions:

– Look at smaller ROIs (limit is voxel)

– Identify spatial pattern of effects



Methods II: Manual Subfield Marking

CA&DG

ERC

SUB

CA1

CA1-2 transition

top bottom



Results I: PTSD Effect on 

Hippocampus
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Voxel-Based/Deformation 

Morphometry
• Automated

• Suited for discerning patterns of structural change

• Explore location and extent of variation

• Use nonlinear registration or ―warping‖ of images

– Within: capture changes in brain over time

– Between: measure deviation from atlas brain

– relate anatomy to clinical/functional variables

• Statistics are computed on each voxel

• Low power



Voxel-wise Morphometry

• Produce a map of statistically significant 

differences among populations of subjects.

– e.g. compare a patient group with a control 

group.

– or identify correlations with age, test-score 

etc.

• Images are pre-processed so that 

corresponding regions of the brain are in 

spatial alignment



Pre-processing for Voxel-

Based Morphometry  (VBM)



Map 1;

diagnosis 0 

age 65 

score 16

Map 2;

diagnosis 1 

age 68 

score 8

Map n;

diagnosis 1

age 73 

score 4

Voxel-wise Statistics

diag1

diag2

 diag3
diag4

tdiag1

tdiag2

tdiag3
tdiag4

coefficient maps 

for each variable
statistic maps 

for each variable
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AD

FTD

12mm Gaussian Density Filter

20mm B-Spline Warp5% 20%

Reduction in Mean Local Gray Matter Density

AD and FTD Gray Matter 

Density



Some Explanations of the 

Differences

Thickness Folding Misclassification Misregistration



Limitations of VBM

• Voxel based morphometry (VBM)

– confuses tissue volume loss and displacement 

– relies on the automated segmentation of images

– regions of abnormal WM may be incorrectly classified 

as GM 

– segmentation of subcortical structures can be 

problematic due to mixing of GM and WM 

• VBM is a flawed method for investigating white 

matter (WM) loss or subcortical involvement.



Disease Effect

Statistical Model of ‗Expected‘ 

Grey Matter Location 

Derived From Segmentation

and Approximate Spatial 

Normalisation of Population

Subject with No Disease Subject with Disease

Apparent Loss of Grey Matter

in this individual as less tissue falls

inside model region

Grey Matter Displaced

Outside Expected Region

Appears as loss

VBM Analysis:

White 

Matter 

Loss

Ambiguities in Interpreting VBM results



Comparing VBM to Deformation 
Morphometry

Compare Regional
Stats: e.g. Gray 
Matter Density

Coarse Non-Rigid
Transformation

Transformation
Describes  All 

Differences

Fine+Accurate 
Nonlinear

Transformation

Reference Anatomy Individual

Voxel 
Morphometry

Deformation
or Tensor 

Morphometry



Creating Deformation Maps

Step 1: Nonlinear Registration Step 2: Determinant of Jacobian Matrix at 

each voxel, giving the pointwise volume 

change at  each point

T(x1,y1,z1)
V2V1

1 1 1

2 2 2

1 1 1 1
1 1 1

2 2 2 2

1 1 1

2 2 2

( , , )

dx dx dx

dx dy dz

dy dy dy V
J x y z

dx dy dz V

dz dz dz

dx dy dz

 



Reference Target

More about the Jacobian
y=T(x)

x=(x1,x2) y=(y1,y2)

x=T-1(y)

X
Y

When moving in a path across one 
anatomy, how quickly are we moving in 
each axis in the other anatomy?

Summarized by the Jacobian Matrix of 
partial derivatives



Jacobian or log Jacobian?
• 0  |J|  ; log transform normalizes 

distribution

• Equal probabilities to expansions and 

shrinkages that are reciprocals, i.e.

• |J|=0.5, log10|J|=-0.3

• |J|=2.0, log10|J|= 0.3
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32 controls; all distributions pass tests for normality



Age 

-map

|J|

Log10|J|

Age 

T-map

|J|

Log10|J|

If your data are normal, choice of |J| or log10|J| matter of preference.



Group Comparisons of 

Between Subject 

Differences using 

Deformation Morphometry



FTD

• Clinical subtype of frontotemporal lobar 
degeneration

• Impairment of personal conduct and social 
behavior

• Sometimes presents with ALS

• Postmortem studies show that atrophy:
– begins in frontal lobe, 

– extends into the anterior temporal lobes and basal 
ganglia, 

– eventually involves subcortical structures,

– white matter is prominently affected.



Methods

• Deformation maps created from baseline MRI

• Dependent variables were deformation maps

• Independent variables: group and head size

Age CDR MMSE

CN 

(N=22)
63 7 0 29.3 2.2

FTD 

(N=22)
63 6

1.12 

0.69
23.1 7.0





Don’t Forget to Examine the Map 

of Estimated Effects!
ROI Estimates in Voxel Morphometry

T-map

-map
1-50% contraction/expansion



Magnitude of Atrophy

We observed tissue reductions of:

• 34% in the ventromedial frontal region

• 26% in the thalamic region

• 10% in the brainstem region

• 35% in the temporal region (not as significant)
– Could be poor alignment of structures

– Inconsistent spatial pattern of atrophy, consistent with 
considerable variability of clinical features of FTD

• No significant atrophy of parietal or occipital lobes



Validation:

ROI Volumes on 10 FTD vs 10 CN

 CN FTD %Reduction p-value 

%Frontal Lobe 34.5  1.0 31.9  2.27 7.5 0.003 

%Temporal Lobe 16.3  1.0 16.3  1.0 0 0.85 

%Brainstem 
midsagittal 

0.086  7.65E-05 0.076  7.46E-05 11.6 0.006 

 

Volumes expressed as % of intracranial volume
Volumes expressed as % of intracranial volume



Group Differences of Within 
Subject Changes for
Longitudinal Studies



Step 1: Within 

subject 

registration 

between 

timepoints timepoint 1 timepoint 2 atrophy rate map

Step 2: Subject 

to atlas 

registration

atlas

Step 3: 

Combine 

registrations

deformation map:

atrophy rate in 

common space

Deformation Morphometry
Creation of Maps of Longitudinal Deformation



PTSD Question

• Samuelson reported greater cognitive decline in 

PTSD

– Delayed facial recognition (WMS-III Faces II)

– Working memory (Digit Span)

• Is there progressive brain shrinkage with PTSD?

• Longitudinal images and neuropsychological data 

were analyzed to:

– Determine the extent to which PTSD accelerates brain 

atrophy
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Average Rate of Atrophy
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PTSD- vs. PTSD+
Map of T-statistics

T=-4 T=4|T|=2

Yellow shows regions of slower brain aging in PTSD+ patients 

Blue shows regions of faster brain aging in PTSD+ patients

Small regions of low significance showing opposite effects from expected!



What next?
• Must be greater variability in atrophy 

rates among PTSD+

• Can we determine measures associated 

with atrophy rate, account for variability, 

see PTSD effect?
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Atrophy Rate Predictors in 

PTSD+

Baseline Frontal

Gray Matter Volume

Baseline Age

CAPS change T=-4

T=4

|T|=2

Blue: volumes, age, or CAPS associated with greater atrophy



Change in CAPS

• Although all patients still diagnosed as PTSD+ at 
followup
– Large variation in course of disease

– 47 point CAPS increase to 40 point CAPS decrease

– 6 patients went from full to partial diagnosis

• Subgroup 
– 11 Improvers had 15-40 point CAPS decrease 

– 5 Stable subjects had 6-14 point CAPS decrease

– 9 Decliners had 2-47 point CAPS increase

• Compare Improvers and Decliners to PTSD-
covarying for baseline FGM and age
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Longitudinal Change in PTSD



Bibliography: deformation morphometry

• Cardenas et al. 2009, J Neurovirol. Jun 4:1-10.

• Pieperhoff et al. 2008, J Neurosci 28(4):828-42.

• Kim et al. 2008, NeuroImage 39(3):1014-1026.

• Cardenas et al., Arch Neurol 64(6):873-877.

• Leow et al. 2009, NeuroImage 45(3):645-655.

• Aljabar et al. 2008, NeuroImage 39(1):348-358.



Structure/Function 

Relationships



Goals

• Identify patterns of brain atrophy 

associated with cognitive impairment and 

future cognitive decline in non-demented 

elders

• 71 elders studied at baseline and 1 yr

• Examine brain anatomy underlying verbal 

memory, semantic memory, and executive 

function



Cognition

• Verbal memory

– Show list of words

• Semantic memory

– Object naming

• Executive function

– Decision making, planning



Cognitive Change

Table 1: Neuropsychological test scores at baseline and 1 year follow-up. 

 Delayed Verbal 

Memory 

Semantic Memory Executive Function 

Baseline 

Mean  SD 
 

(min, max) 

 

99.1  22.0 

(62.1, 139.2) 

 

108.7  13.9 
 

(72.6, 142.8) 

 

104.3  16.7 
 

(67.8, 133.3) 

1 year follow-up 

Mean  SD 
 
(min, max) 

 

93.6  20.9* 
 

(62.1, 139.2) 

 

107.1  13.7 
 

(64.8, 135.2) 

 

102.7  17.2** 
 

(61.7, 131.6) 

*follow-up < baseline, p=0.0007 

**follow-up < baseline, p=0.03 



Anatomy Predicting Cognitive Performance

Baseline Memory

Memory Decline

Baseline Object Naming

Object Naming Decline

Baseline Executive Function

Executive Function Decline

Red/yellow voxels->smaller tissue volume predicts worse cognition or cognitive decline

Blue voxels->greater CSF volume predict worse cognition or cognitive decline



Limitation of Jacobian 

Determinant
• Information about shape change largely lost

• Orientation specific characteristics lost

• 2D Example: 

• Possible solution: examine deformation tensors, 

full Jacobian matrix, displacement fields 

shape change

no volume change



Map 1;

diagnosis 0 

age 65 

score 16

Map 2;

diagnosis 1 

age 68 

score 8

Map n;

diagnosis 1

age 73 

score 4

Multivariate voxel-wise



Deformation tensors in HIV
Lepore et al., 2008 IEEE TMI, 27(1):129-141 

S is positive definite symmetric; statistics on 6-vector

2D Corpus Callosum

Example: green shows

p<0.05
log10|J| Log(S)

3D: p-value maps

Multivariate shows 

comparable patterns 

of atrophy with greater 

sensitivity

log10|J| Log(S)

Note there is not complete overlap between methods; univariate and multivariate single 

modality analyses can be complementary!



Deformation tensors in alcohol recovery
Studholme and Cardenas., 2007 MICCAI LNCS, 4792:311-318 

Statistics on 9-vector; all elements from Jacobian matrix encoding 

longitudinal change in reference coordinates

F-map full Jacobian

Effect maps: directional 

patterns of volume change 

revealed in deep WM and 

subcortical nuclei

F-map |J|

|J| J



Bibliography: Multivariate Voxel-wise

• Gaser et al. 1999, NeuroImage 10:107-

113.

• Gaser et al. 2001, NeuroImage 13:1140-

1145.

• Thompson and Toga 1997, Medical Image 

Analysis 1:271-294.

• Worsley et al. 1998, Human Brain 

Mapping 6:364-367.



Multivariate Multimodality



Multivariate voxel-wise

•Many clinical imaging studies acquire  more than one 

imaging modality

•T1 structural 

•Spectroscopy

•Diffusion tensor imaging (DTI)

•Perfusion imaging

•fMRI

•Push to integrate all imaging information

•In multivariate voxelwise analyses

•Dependent variables are deformation maps and other imaging 

map (e.g., FA)

•Sensitivity to effects may increase if dependent variables are 

related (e.g., GM perfusion and GM atrophy)



Map 1;

diagnosis 0 

age 65 

score 16

Map 2;

diagnosis 1 

age 68 

score 8

Map n;

diagnosis 1

age 73 

score 4

Multivariate Multimodality
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Motivation for Co-Analysis
• Our current implementation of nonlinear 

registration of structural images uses only T1; no 

―information‖ for alignment of within white matter

• DTI provides good imaging of white matter

• Deformation morphometry co-analysis with DTI 

may reveal more disease-related brain 

abnormalities than either modality alone

• Is ―whole‖ greater than ―sum of parts?‖



Voxel-wise Statistical Models

• Univariate single modality

• FA = group + age

• |J|=group + age

• Univariate multimodality

• |J| = group + age + FA

• Multivariate multimodality

• |J| FA = group + age



Mild Cognitive Impairment vs. 

Healthy Elderly



Overlap of Univariate and 

Multivariate Results

Regions in green highlight better sensitivity of multivariate



Bibliography: Multivariate 

multimodality

• Friese et al. 2010, J Alzheimers Dis 

20(2):477-490.

• Avants et al. 2008, Acad Radiol 15(11): 

1360-1375.



Summary

• Computational anatomy is powerful for 

measuring 

– differences between subjects

– Group differences in within subject 

longitudinal change

• Can relate anatomy to clinical and 

functional variables

• Can facilitate analysis with or in other 

imaging modalities



Acknowledgments

• Colin Studholme, Ph.D.

• Linda Chao, Ph.D.

• Dieter Meyerhoff, Dr. rer. 

Nat.

• Norbert Schuff, Ph.D.

• Michael Weiner, M.D.

• Adam Boxer, M.D.

• Bruce Miller, M.D.

• Dan Mungas, Ph.D.

• Johannes Rothlind, 

Ph.D.

• Charles Marmar, M.D.

• Thomas Neylan, M.D.

• Stefan Gazdzinski, Ph.D.

• Tim Durazzo, Ph.D.

• Diana Truran


